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SUMMARY 

Numerical simulation of open water flow in natural courses seems to  be doomed to  one- or two-dimensional 
numerical simulations. Investigations of flow hydrodynamics through the application of three-dimensional 
models actually have very few appearances in the literature. This paper discusses the development and the 
initial implementation of a general three-dimensional and time-dependent finite volume approach to  simulate 
the hydrodynamics of surface water flow in rivers and lakes. The slightly modified Navier-Stokes equations, 
together with the continuity and the water depth equations, form the theoretical basis of the model. A body- 
fitted time-dependent co-ordinate system has been used in the solution process, in order to accommodate the 
commonly complex and irregular boundary and bathymetry of natural water courses. The proposed adaptive 
technique allows the mesh to follow the movement of the water boundaries, including the unsteady free-water 
surface. 

The primitive variable equations are written in conservative form in the Cartesian co-ordinate system, and 
the computational procedure is executed in the moveable curvilinear co-ordinate system. Special stabilizing 
techniques are introduced in order to eliminate the oscillating behaviour associated with the finite volume 
formulation. Also, a new and comprehensive approximation for the pressure forces a t  the faces of a control 
volume is presented. Finally, results of several tests demonstrate the performance of the finite volume 
approach coupled with the adaptive technique employed in the three-dimensional time-dependent mesh 
system. 

K E Y  WORDS Free Surface Flow Curvilinear Co-ordinates Three-dimensional Finite volume Mesh adaptive 
technique 

INTRODUCTION 

Since its inception, the field of computational hydraulics has concentrated on one- and later on 
two-dimensional modelling of open water flow. However, continuing advances in computer 
technology and numerical techniques will increasingly generate more interest in the modelling of 
more complex three-dimensional problems. Yet, the degree of success achieved in this field can 
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hardly be rated as moderate.'92 This is due to inherent difficulties associated with the physical 
characteristics of open water problems which can be summarized as follows: 

1.  Open water modelling deals normally with a huge body of moving water over a particularly 
large distance that is normally measured in kilometres. Such a physical constraint imposes severe 
requirements on the implementation of any particular computational scheme. It also affects the 
accuracy of the results, specially for three-dimensional cases, where the ratio of the vertical grid 
increment to the horizontal one is significantly small. 

2. The condition of free surface, under which open water flows, is one, if not the most, intricate 
problem that three-dimensional simulation has to deal with. Complexities arise not only because 
the free water surface is an unsteady boundary but also from the fact that its gradients are the main 
factors that generate flows and induce currents. The numerical integration should be extended up 
to the current location of the free surface which is an unknown variable at the moment of 
integration. This requires special considerations in the numerical scheme. One common practice 
extensively used in the l i t e r a t ~ r e ~ - ~  consists of assuming a known average water surface level 
around which an additional function ~ ( x ,  t )  describes the fluctuations in the water surface. This 
procedure would only harm the predictive character of the model in cases where the average water 
surface is unknown, and it is obviously restricted to small fluctuations. 

3. Water flow encountered in natural courses is. normally confined to particularly complex 
geometry and bathymetry that may induce complications in the local flow pattern and generate 
secondary currents. Therefore, this additional physical constraint has to be fully considered 
together with the previous two in order to ensure a minimal proper simulation. U,nfortunately, 
instead offitting the boundary or using interpolation to fix the cell values adjacent to the boundary, 
the common practice in computational hydraulics6g7 is to replace the boundary with a completely 
different set of scaled lines (Figure 1). Although, in principle, a grid refinement can be used to 
alleviate many of these problems, the necessary degree of refinement is often totally impractical for 
engineering purposes. 

Leendertse et ~ 1 . ~  have devised what could be considered the first attempt to model three- 
dimensional circulation in open water flow. The model is based on a system of horizontal layers in 
which water surface fluctuations are reserved solely to the upper layer. All subsequent 
differ little from the above model. They mostly make use of a Cartesian co-ordinate system and a 
rigid-lid approximation at the free surface boundary. Later Sengupta et al.' presented a model that 
avoids the drawback of rigid-lid approximation while keeping most of the characters of the other 
models. 

Figure 1 .  A circular basin computational boundary' 
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The material presented herein deals with the application of time-dependent curvilinear co- 
ordinates in the modelling of open water flow. These co-ordinates are used to fit the irregular 
boundary of the water body and to continuously track the movement of the unsteady free water 
surface. Therefore, the need for a rigid-lid approximation is eliminated and a more realistic 
approach has resulted that can adequately model the effects of the variations of the water surface as 
well as of the solid boundaries. 

MATHEMATICAL FORMULATION 

A slightly modified version of the Navier-Stokes equations forms the theoretical basis of the 
model. Together with the continuity and other complementary equations, they are written in a 
conservative form in a Cartesian co-ordinate system. Basic assumptions of homogeneous, 
incompressible and viscous flow are considered. A first-order turbulent closure model is used. This 
is based on an analogy with laminar diffusion terms applied to the eddy transport coefficients. 
Isotropic eddy conditions are considered in the planar direction, whereas a different value is used 
in the vertical direction. 

The equations of motion can be written as follows: 

(Ui l i  = 0, i =  1,2,3, ( 1 4  

(1b) 

(P)i - Pgr6ii = 0, i = 3, (14 

1 
P 

(Ui), + (uiuj)j + 2EijkWjUk = --(P)i + gr63i + [vj(ui)j]j, i = 1, 2, j = 1, 2, 3, 

in which i = 1,2, j = 1,2,3 are repeating indices that indicate summation, ( - ) t  represents the 
derivative with respect to time, (-)jrepresents the derivative with respect to the j th Cartesian co- 
ordinate xj, ui are the Cartesian components of the velocity vector, t is time, gr is the acceleration 
due to gravity, P is pressure, p is density, v j  are the eddy viscosity Coefficients, w j  are the Cartesian 
components of the earth rotation vector and &ijk, 6, are the Christoffel and Kronecker symbols, 
respectively. 

Equation (la) governs the conservation of mass of an incompressible fluid; equation (lb) 
represents the momentum conservation in the eastward and northward directions, respectively; 
equation (lc) is the simplified form of the momentum equation in the vertical direction resulting 
from the application of the hydrostatic approximation. The latter consists of neglecting the vertical 
component of the acceleration while retaining the vertical component of the velocity throughout 
the computation process. This approximation is not only suggested by the physical behaviour of 
the flow but is also required to alleviate the high distortion of the ratio between vertical and 
horizontal grid increments. 

Extending the hydrostatic approximation to equation (1 b) gives 

( u , ) ~  + ( u , u ~ ) ~  + 2&ijkujUk = - gr[(h + x l )  - x31i + [ V ~ ( U ~ ) ~ ] ~ ,  i = 1,2, j = 1,2,3, (2) 
in which x3 is the elevation of the local element with respect to a horizontal datum and x,, 
represents the elevation of the stream bottom with respect to the same datum. 

Since equation (lc) does not contain u3 and equation (2) includes a new variable h, two 
additional equations must be provided in order to evaluate these variables (i.e. h and u3). These 
equations are based on special integrations of the continuity equation. The bottom shear stresses 
are expressed according to the quadratic shear stress law using the tangential components of the 
velocity adjacent to the bottom. Stresses inside the water body are accounted for through the eddy 
diffusion terms. 
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FINITE VOLUME FORMULATION 

In developing computational methods for simulating flow fields in arbitrary domains, there are 
two basic approaches: either (1)  solving the governing equations in the physical space of the flow 
where the discretization is based on an integral form of the Cartesian equations over an arbitrary 
control volume, or (2) transforming the equation as well as the computational region into a new 
space where the domain becomes a simple rectangular form in order to avoid the difficulty 
associated with specification of boundary conditions. In this work, however, the first approach is 
considered. Hence the Cartesian equations are integrated over a typical control volume made up of 
constant co-ordinate surfaces forming a non-orthogonal grid system (Figure 2). 

The advantages of using the finite volume formulation numerically to compute the conservation 
laws lie in its ability to represent the physical phenomena in different terms rather than dealing 
abstractly with governing equations. This formulation is always conservative since fluxes 
introduced at cell boundaries are the same between two neighbouring cells. The major 
disadvantages of the finite volume formulation reside in the fact that it belongs to the class of 
central difference schemes. These are neutrally stable and generate oscillations in the computed 

The grid 

Fitting the water body with a three-dimensional boundary-conforming grid is further 
complicated by the presence of the free water surface. Although solid boundaries can also vary as a 
result of flooding or tide reversal, the movement of the free surface is of greater importance. Hence, 
it has to be accurately modelled. Continuously tracking the movement of the water surface and 
correctly locating its instantaneous position will be partially solved by a judicious composition of a 
time-dependent boundary-conforming grid. This is based on a three-dimensional curvilinear co- 
ordinate transformation defined as follows: 

ti = 5i(x1,  t )  

t3 = a ( x 3 ) [ x 3 - x d 3 ( x i ) ] / h ( x i , t ) ,  i =  1,2, 

z = t  

P2 X 

(3) 

Figure 2. A curvilinear control volume and its transformed image 
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where (ti) are the covariant components of the curvilinear co-ordinate system, xi is the vertical 
location of the flow bottom, a is a concentration function used to stretch the grid in the vertical 
direction and all other variables are as defined earlier. The inverse Jacobian of this transformation 
is given by 

J - ’  = ( t i ) i  = [ ( 5 1 ) 1 ( 5 2 ) * - ( 5 1 ) 2 ( t 2 ) 1 1  (4) 

and the metric matrix is G = J J - ’ .  
This co-ordinate system can be viewed as a planar two-dimensional system of t1 and t2 extended 

to three dimensions by t3, which is defined separately and independently. The basic idea behind 
this set-up is to couple an independently defined two-dimensional bank-conforming grid to a 
naturally adapted system of moveable layers distributed over the depth of the water. By varying t3  
in the interval [0, a] ,  the entire water depth can be swept accordingly. The free water surface and 
the stream bottom form two particular co-ordinate surfaces, designated by 5 ,  = 0 and c3  = a, 
respectively (Figure 3). 

This particular formulation of the curvilinear transformation is designed chiefly to accommo- 
date the hydraulic and topographical features pertinent to open water flow in natural courses. In 
fact, the free water surface as well as the bottom have considerable importance in the theory and 
practice of classical open channel hydraulics. Moreover, this transformation helps reduce the 
complexity of the mathematical derivations and integrations required by the application of the 
computational procedure. 

The initial construction of the grid system is first made for the planar two-dimensional set by 
applying the method advocated by Thompson et a1.” This considers the physical plane to be 
defined as the solution of a Laplace or Poisson equation. Grid points are arbitrarily specified on the 
boundaries. The generated mesh is not necessarily orthogonal, which is not a requirement to carry 
on numerical calculations. Once this step is accomplished t3 can be subsequently incorporated. 
Stretching the co-ordinate lines to accommodate boundary or local requirements in the planar set 
can be accomplished by a special procedure outlined in Reference 12. However, the packing and 
refinement of tke vertically distributed layers is performed by assigning appropriate functions, such 
as trigonometrics or polynomials, to the variable a present in the definition of t3. 

Figure 3. A vertical pack of the automatically adjusted layers 
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water 
series 

or, in 

The grid system, being moveable, requires redefinition at each time step. The analytical 
expression of t3 ensures this requirement in the vertical direction. However, relocation of the grid 
setting in the planar directions is directly related to the movement of the planar boundaries of the 

' body. The instantaneous position of a mesh node can be given then by a first-order Taylor 
expansion, such as 

terms of curvilinear co-ordinates, 

i =  1,2, 

with V *  = (xi)[, i = 1,2 and gi a diagonal element of the metric matrix G. 

Integral formulation in moveable grids 

Equations (la) and (2) are integrated over a control volume element made of the curvilinear grid 
described above (Figure 4). The integration procedure is designed to evaluate an overall balance 
over the control volume. In order to estimate the influx and outflux, the volume integral is 
converted into a surface integral using Gauss's theorem. Further, owing to the variability or the 
movement of the control volume, Reynolds' theorem has to be applied simultaneously. The 
integral form of the momentum equation can be written as 

(74  
1 
P 

(u,), + ( u , u ~ ) ~  + -(P)i  - [v,(ui),],) dV = 0, i = 1,2, j = 1,2,3, 

[(P),  - pgrSi3]  dV = 0, i = 3. J J J v(r) 

Figure 4. Location of various hydrodynamic properties on the control volume 
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Coriolis acceleration and body force components in the planar directions are omitted since no 
loss of generality would be inflicted. The application of Gauss's theorem at a fixed moment in time 
results in 

( P  - ~ g ) ~ 6 ~ ,  dSj = 0, i = 3. J J s(t) 

( )s indicates that variables inside the parentheses are calculated at  the face of the control 
volume. The application of Reynolds' transport theorem over the control volume, which is 
considered as a deformable medium, can result in 

The additional terms ( G j )  represent the Cartesian components of the intrinsic velocity of the control 
volume computed at  the control volume faces. These are a result of the application of Reynolds' 
theorem which states 

The above formulation accounts for all changes in fluxes through the control volume faces due to 
changes in their instantaneous positions. Since Reynolds' theorem is applied to the mesh rather than 
to a fluid volume, it is appropriate to designate this application as the 'mesh conservation law' by 
analogy with the geometric conservation law advocated by Thomas and Leonard.' The mesh 
conservation terms are automatically computed and incorporated into the numerical calculation 
to produce a true conservative formulation for the case of a moving mesh. This technique is only 
necessary for unsteady flow problems. In steady-state cases, there is no deformation of the control 
volume or displacement of the mesh. Also the application of this technique at  every co-ordinate 
surface, t3 = constant, is equivalent to the application of the well known kinetic boundary 
conditions often used in open water modelling at  the water surface level. 

of the control volume in the Cartesian co-ordinates are calculated 
directly after the hydrodynamic properties of the flow. However, owing to the adopted definition of 
the co-ordinate transformation, u', and Liz are functions of the horizontal movement of the water 
boundary, whereas fi, is provided by the vertical movement of the free water surface. The 
component f i 3  can be calculated as a fraction of the rate of change of water depth h at the 
concerned location. 
Equation (9) can be written explicitly in the following form: 

The velocity components 

i =  1,2,  j =  1,2,3,  ( 1  1 )  
with AS,,, = (ASj(,,) = A t i  x Atk. 

The integration procedure of the finite volume formulation is extended to the continuity 
equation, where it is twice applied using a different control volume in each case. First, the 
continuity equation is integrated over a vertically adjacent column of control volumes covering the 
entire depth. This serves to obtain the equation used to calculate the water depth, which is 
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Secondly, the continuity equation is integrated over a normal control volume to yield a 
recurrence equation that serves to calculate the Cartesian vertical component of the velocity, such 
as 

The continuity equation itself is not verified explicitly -during the computation process. 

Initial and boundary conditions 

A unique and convergent solution of the above set of equations requires the specification of 
initial and boundary conditions which complete the mathematical formulation of the problem. 

Initial conditions may be prescribed as follows: 

H(&) = H ,  = constant, 

p(&)  = po = constant, 

P(<i) = Po(5i) (local hydrostatic pressure). 

When more realistic field data are available, initial conditions may be set accordingly. 
Boundary conditions are formulated, for reasons of generality, in terms of the contravariant ( U i )  

and covariant (Ui) components of the velocity at the fictitious cells of the boundary. At these cells 
the hydrodynamic properties are indexed by (o), whereas the insider cells are indexed by (i). Thus, a 
typical setting of the boundary conditions at t1 = C, = constant can be given as follows: 

1. For slip boundary conditions (when assumed): 

u;) = - u;), 
ul(o)= Ul( i ) -  ( 1 5 )  

The corresponding Cartesian components of velocity can then be calculated by the following 
formula: 

[ 2 u 1 ( i ) ~ ~  + u2(i)[ ( 3 T  - (-) axl 2 I]. 
at, at2 at 1 at1 

UZ(0)  = ~ 

Similar formulae are also used at other boundaries. 
J s l 1  

2. For non-slip boundary conditions simpler formulae may be applied, such as 

u;,) = - Ufi), j = 1,2,3,  (17) 
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or in terms of Cartesian components, it is simply 

u ~ ( ~ )  = - u ~ ( ~ ) ,  j = 1,2,3. (18) 
For other variables, such as p and h, the principle of reflection is applied. 
At the free water surface, values of the shear stresses T~~ and ~ 2 3  are specified in terms of the first 

derivatives of velocity as 

The values of these stresses at the bottom of the flow are expressed in terms of the tangential 
components of velocity at the lower layer using a Manning-based quadratic approximation. 

DISCRETIZATION PROCEDURE 

The method used in this work to discretize the integral equations is based on an explicit second- 
order scheme, with its advantages of simplicity. Nevertheless, it must include some particular 
features relating to the problem of interpolating the values of various variables at cell faces. Also, 
the adaptation of an arbitrarily varying mesh, and the consistency of the algebraic end equations 
with the physical conservation laws must be well incorporated. 

Variables associated with a volume integral are approximated by volumetric average values, 
whereas those associated with a surface integral are approximated by face average values. Thus, the 
corresponding finite difference operator of equation ( 1  1 )  can be written as follows: 

CUi JIcA5 I A t 2  At3IAT 

- ~ i i i j  - v j ( ~ i ) j  [(t1’)At2At3],  lw 
P 

- [ uiuj + ;bij - uiii j  - v ~ ( u ~ ) ~  

r D 1 
- Luiuj  + i d i j  - uiEj - [(t2’)At1 At3], 1. 

- uiiij - v ~ ( u ~ ) ~ ]  [(t3j)At1At2],, 
tP 

l b  

P 
- [ uiUj + pdij - U i c j  - v j ( U i ) j  [(r3j)At1 A[2]b = 0, 

i =  1,2, j =  1,2,3.  

The subscripts w, e, n, s, t, and b correspond to the west, east, north, south, top and bottom 
faces of the control volume respectively; the subscript j indicates a repeated summation, J is the 
Jacobian of the transformation and ( [ ‘ j ) ,  (5”) and (t3j) form the contravariant base vectors 
of the local curvilinear co-ordinate system, given by 
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Figure 5. Simple linear approximation of bw = ( Q ,  + Q2) /2  is clearly inadequate 

6' = (5") = ((51)17 ( 5 1  12, 

s2 = (t2') = ((52)1,(52)2,0), 

5 3  = (53') = (O,O, l/h). 
(21) 

The basic finite volume approach stipulates the use of the middle value interpolation 
[($' + b2)/2, for example] between adjacent cell values in order to calculate a corresponding 
face value. For instance, this second-order approximation may be suitable in the case of 
quasi-uniform and quasi-rectilinear meshes. But, in the case of a distorted or arbitrary mesh 
(Figure S), this approximation is clearly unsuitable and should be replaced by a more accurate 
but still general approximation. Therefore, cell face values of the velocity components are 
expressed first in terms of the contravariant components of the velocity in the local curvilinear 
system. Then they are computed in terms of the Cartesian components of velocity. For example, 
the value of LI' at (e), the eastern wall of the control volume, is given by 

with 

and 

[u211 = C(5z)t + ( 5 z ) i  + (52)211,  

[v311 = c(53)t -k  (C3)l ( 5 3 h  (53)311* 

The idea is that the contravariant components of the velocity hold in their definition the 
geometric characteristics of the local co-ordinate system (or the grid). These are related to metric 
dimensions, orientations and deformations. Moreover, these velocity components can be 
interpreted as weighted projections of the velocity in the directions of their respective 
contravariant base vectors. These vectors are alternatively perpendicular to their opposite 
covariant base vectors, which constitute the local control volume boundaries. However, this 
physically sound approximation induces some complexity into the formulation that requires 
additional computing time. The Cartesian components of the velocity can then be given by 

C(ui)Ie = [ G -  'I (u' - (5i)t)Iey 

where G-'  is the inverse metric matrix, expressed as 
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(24) 1 ( C d z  (5 l ) l  - ( 5 , ) ,  ( 5 J 3  0 

cc-'l= - (52) ,  (tl), ( C d I  ( C d z  0 
J 

( M L  (51h -(5A ( C A  ( 5 d 2  (5A -(ti) (el)> (<dl (CA - ( 5 , ) 2  ( C d 1  
I [  

Similar formulae ought to be used at each of the control volume faces. 

computational cell in terms of the curvilinear coordinates is given by 
The discretized equation yielding the Cartesian components of velocity at the centre of the 

[uih]:+ = [Uih]! 

with 
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and 

ni = ~ [aPh]w[6i1x;z - 6izx;2]w J - ’  P i 

Pressure approximation 

The use of the hydrostatic approximation yields the following formula for the pressure P: 

P = P ,  + pg,(h + xd” - x3), (28) 
where P, is the atmospheric pressure at the level of the water surface. 

The incorporation of this formula into the integral equations results in a quadratic term of h. The 
linear interpolation of the hZ terms renders the difference equations inconsistent with the basic 
conservation laws. A simple remedy for each quadratic term and each volume face would only be 
practically unfeasible. In fact, we devise here a macro approximation based on overall balance of 
pressure forces for the computational cell under zero-flow condition (Figure 6).  This implicitly uses 
a different pressure approximation at each face of the control volume ensuring the consistency 
requirement as follows (in the direction): 
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1 F6.O 
I FOR L E V E L E D  WATER 

S U R FAC E CON DI T I0 N S 

F6 I 

Fl I F3 I 

F 

PROJ ECTlON 
AREA 

Figure 6. Pressure balance over a control volume for a levelled water surface condition 

The metrics present in the above equation, as well as in the momentum equations, are calculated 
on the basis of a first-order approximation, such as 

STABILITY REQUIREMENT AND COMPUTATIONAL ALGORITHM 

In surface water flow simulations, convective terms are mostly dominant whereas diffusion terms 
averaged over normally long distances are less significant. Therefore, the positive effect of the 
diffusive terms, as a stabilizing factor, is greatly lessened. This leaves any generated oscillation 
growing uncontrollably and threatens the capability of a central difference scheme to produce a 
stable and convergent solution. In order to rectify this problem it was thought opportune to adopt 
an artificial viscosity damping factor. This is applied only in the two-dimensional planar direction. 
With the exception of having specially defined variable coefficients, the following is based on a 
similar correction given by Gnoffo:14 

[ui]:+' = [ui]:+' + c,[ui]:+' + C,[Ui]~+' 
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+C,[ui]!&+' +C,[ui];++', i =  1,2. (31) 

C,, C,, C ,  and C ,  are set as functions of the local water surface gradient in the planar direction. 
The proportionality factors are estimated in the order of the corresponding local (l/A&) metric. 

The calculation algorithm is performed according to the following steps: 

1. Identify the initial position of the physical boundaries and the initial water surface elevations. 
2. Generate the initial grid system and calculate the corresponding metrics. 
3. Compute u1 and u2 using equation (25) but without IIi. 
4. Calculate u3 and the water depth h. 
5. Recalculate u1 and u2 by applying Hi. 
6. Correct u1 and u2 by using equation (31). 
7. Redefine the position of the grid elements and update the metric values. 
8. Go to 3. 

TESTS AND RESULTS 

Several computational tests have been performed to verify the capability of the model in achieving 
stability, convergence, and accuracy in a number of typical open water problems. Although the 
algorithm is devised for general three-dimensional flow with irregular geometry and bathymetry, it 
can obviously be applied to regular rectangular geometry problems. These are needed to test some 
of the characteristics of the model, such as symmetry, diffusivity and ability to approximate simple 
analytical solutions or to match available results from published materials. 

The first application of the model was to test its consistency with the physical situation and its 
ability to conserve the state of zero flow or reproduce interchangeably a constant or equally varied 
velocity distribution. In the zero-flow test, the initial boundary conditions consisted of a zero slope 
in the free water surface as well as a zero velocity field. A variant slope in the bottom of the 
basin was introduced, rendering the test meaningful and providing the possibility of having 
unequal pressure forces at each of the control volume faces. In this case, the momentum equation 
is reduced to IIi only. The Hi approximation given by equation (29) assured a successful and 
perfect zero velocity for an undetermined period of calculation. Another basic test consisted of 
measuring the model adequacy in conserving the hydraulic properties of the movement of a 
propagation wave having an amplitude of 2 m and a period of 50s in a 5 m  deep and l00m 
long basin. The calculation showed a perfect reproduction of the wave period and a synchroni- 
zation of the amplitude with an invariable factor of dissipation. 

Oscillation of a standing wave in a closed basin 

This example is intended to simulate the hydrodynamic behaviour of the repetitive motion of a 
stationary wave and to examine the effects of the deformability of the grid system in the vertical 
direction on the stability of the scheme and the authenticity of the results. The basin considered was 
100 m long, 50 m wide and 5 m deep. The dimensions of the grid systems used were (10 x 5 x 5 )  and 
(20 x 10 x 5),  respectively. These allowed the determination of the effect of mesh refinement of the 
behaviour of the solution. A small mesh dimension and a reduced basin size are intended to test the 
effects of non-linear terms and their influence on the stability of the numerical scheme. 

As initial conditions a sinusoidal free water surface profile was imposed at time t = 0. This 
produced a maximum depth of 6 m at the left end of the basin and a minimum depth of 4 m at the 
right end. The potential energy stored in the initial standing wave will suddenly be released and 
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e 

Figure 7. Sequences of flow free movement-vertical view, At = 0.5 s, v = 0.05 m2/s: (a)t = 10s,(b)t = 35 s,(c)t = 70% 
(d)r = 125s,(e)t = 155s 

transformed into a repetitive back and forth movement at the natural resonance period of the 
basin. Slip boundary conditions were used in order to alleviate the retardment factors and to be 
able to compare the results with Reference 8 and the linear wave theory. In Reference 8, Leendertse 
et al. used a far larger basin and completely removed the advective non-linear terms of the 
equation, which are the most significant factors in such problems, affecting the stability of the 
numerical scheme. 

Figure 7 illustrates the various sequences of the movement of this suddenly generated wave in a 
vertical plane. The reversible and oscillatory characteristics of the movement produce and preserve 
approximately the same value of the period T = L/,/(gh) of a gravity wave having an average water 
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t = O  sec 

t=32 sec 

t=65 sec 

Figure 8. Mesh adaptation to the reversal movement of the free water surface 

depth h = 5 m and a propagating celerity = ,/(gh). L is the length of the basin. Figure 8 illustrates 
the oscillatory movement of the mesh that follows at all times the configuration of the free water 
surface. The vertical component of the intrinsic velocity of a control volume in the flow field 
changes sign during the computation of the reversal current in complete harmony with the overall 
movement of water. 

The histories of the water surface level location (h) and of the longitudinal velocity component (u) 
near the end and at the centre of the basin are shown in Figures 9 and 10, respectively. The non- 
linear term effects are more appreciable at the centre than at the end of the basin. Even though the 
undulatory form of the variations of (h) or (u) departs from ideal harmony, especially after the first 
reversal, it conserves approximately the same period ( T )  value at both locations. 

Wind driven circulation 

This test described the transient response of the model to a sudden wind shear stress 
corresponding to a wind speed of 40 km/h applied at the free water surface. Initially, the water was 
at rest, velocity was set to zero everywhere with a horizontal water surface profile. The test basin 
had a rectangular shape 2600 m long, 1200 m wide and 7 m deep. It was arbitrarily fitted with 
a (13 x 12 x 7) node grid where A( = 200 m, Aq = 100 m and A( = 1 m. The time step was 
fixed at a 5 s increment. The wind was maintained at a constant speed up to the 255th time step 



THREE-DIMENSIONAL SURFACE WATER MODELLING 48 1 

A t  = 0 . 5  second 

h NEAR BASIN END 

( x 5seconds) 

V 
Figure 9. Variation of the free surface level at the centre and of the basin 

‘4 8 A t  = 0.5 second 

Figure 10. Variation of the horizontal component of velocity at the centre and the end of the basin 
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Figure I I .  The evolution of the velocity profile over the water depth at the basin centre 

when it was suddenly stopped and the water movement was left to alternate freely. 
Figure 1 1  shows the evolution of the velocity profile along the depth of the water at the basin 

centre. This series of curves represents the velocity profiles at different time intervals, starting from 
the initial moment up to 3 15 s, at which point subsequent velocity profiles oscillate moderately. 
These oscillations are apparent in Figure 12, where they are compared with rather more abrupt 
and sudden ones produced in the Reference 8 model. The oscillations are a result of the transient 
response of the water body to the sudden application of wind stress at  the water surface. Their 
pattern is greatly influenced by the continual and rather complex interaction between the non- 
linear convective terms and the viscous terms excited by this sudden imposition of stress at the 
water surface. Figure 12 shows also the history of the development of the longitudinal component 
(u )  of velocity at each of the seven layers covering the water depth. 

The comparison with Reference 8 results is a good indication of the improved stability provided 
by the special formulation of the finite volume approach presented in this work. 

The velocity field is shown in Figure 13 in a sequence of projections on a vertical plane covering 
the duration ofcomputation at certain intervals in time. They show the gradual development of the 
circulation, first in the upper layers and thereafter in the bottom layers, with a reversal in current. 
This circulation is the product of vertical momentum transfer. 

Viscous coupling and debalancing in the water surface is due to wind push-up at  the frontal end 
of the basin. The latter can be viewed as the accumulation of potential energy responsible for the 
continuation of the circulation and the oscillation in the velocity profile in Figure 13 after the wind 
has been stopped. 
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Figure 12. Temporal variation of the velocity at each layer throughout the depth 

Flow in a strongly curved channel 

The flow of water in a channel bend is characterized by its complex three-dimensional pattern 
due to the generation of a transverse helicoidal circulation and the displacement of the centre of 
motion from one side to another across the bend. In addition, at a relatively high velocity, 
separation of flow may occur. The following test deals with the simulation of flow behaviour in a 
stable but strongly curved channel. 

A strongly curved channel is generally characterized by having a small radius to width ratio 
(ro/l? < 3; ro is the radius of the channel centre-line and B is the channel width). In the present case 
this ratio is taken to be equal to 1.5, with ro = 60cm and B = 40cm. The simulation results are 
compared with experimental data given by Gon~harov; '~  yet there exist no analytical solutions of 
such problems. However, some attempts were made to derive analytical solutions for weakly 
curved flow but not without a broad range of assumptions, such as axisymmetric and potential flow 
conditions.' 5*16 

The channel curve consists of a 135" bend with extended straight inlet and outlet reaches of 
length L = B = channel width. The water depth is taken equal to 6cm, as given in Reference 15. The 
longitudinal profile of the velocity at the inlet is set according to the experimental data with an 
average value of 0*26m/s. The vertical profiles are assumed to follow the 1/7th power law. The 
Reynolds number NR = I/r,h/v is equal to 15,540 and the Froude number F = V<,/, /(g,h) = 0-338. 

Three-dimensional views of the grid system are shown in Figure 14. These give the configuration 
of the mesh used at the starting time, where a constant water depth was assumed, and at the 
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Figure 13. Sequences of flow pattern-vertical view, At = 5 s, v = 0.01 m2/s: (a) t = ~ O S ,  (b) t = 900s, (c) t = 2100s, 
(d) t = 3500s. (e) t = 4500s 

10,000th time step after the steady-state condition was established. The calculated water surface 
elevation is plotted in contour line form in Figure 15. It reveals a transverse surface slope with a 
maximum inclination of about 6 mm which occurs at  an angle of about 35" from the beginning of 
the bend. Reference 15 reported maximum inclination at about a 36" angle. The calculation shows 
an average of 1.8 mm in difference between the inlet and the outlet water surface levels compared to 
2 mm reported for the experimental results. 

Figure 16 shows the depth-averaged velocity profiles in the radial direction at  various sections 
along the bend. Figure 17 gives a comparison between the experimental data, given as dashed lines, 
and the calculated profile, plotted as continuous lines. The agreement between the curves is quite 
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( b )  

Figure 14. Three-dimensional view of the evolving mesh: (a) initial mesh; (b) final mesh (steady state) 

satisfactory, and the predicted curves reproduce to a good degree the overall behaviour of the flow 
velocity. The transitional variations of the velocity profile along the bend are due to the fact that the 
fluid mass tends to resist the channel curvature and the liquid particles tend to cross the bend with 
no rotation. The discrepancy between the experimental and predicted values shows a tendency 
slightly to increase towards the outlet zone of the bend. On the other hand, a much larger 
discrepancy (Figure 18) was found between the calculated and measured values of radial transverse 
velocity components, which are generally of much lower order than the longitudinal velocity 
components. It should be noted that the use of the hydrostatic pressure assumption and the neglect 
of the vertical acceleration have a retarding effect on the full establishment of the circulation, 
especially in the present case where the water depth was set to 0.06m. 

CONCLUSION 

A computational model has been presented for the simulation of general three-dimensional free- 
surface flow. The model is based on a conservative finite volume approach for the solution of the 
three-dimensional equation of continuity and momentum components. Important features of the 
formulation include the use of a time-dependent mesh adaptive system that continuously fits the 
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Figure 15. (a) Water surface elevation shown in contour lines. (b) Water elevations at the inner and outer boundaries of 
the bend 
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Figure 16. Longitudinal velocity profiles (V,,/VA) at various sections in the bend (VA is the depth-averaged velocity) 
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Figure 17. Comparison between calculated and measured longitudinal velocity profiles ( V,,/V,) ( V, is the depth-averaged 
velocity): - calculated profile; ----- measured profile 
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Figure 18. Comparison between calculated and measured radial velocity profile (V{JV,) at the centre of the bend: 
calculated profile; ----- measured profile 

boundaries including the moveable free water surface. The model has been applied in a series of 
different flow situations peculiar to open water flow problems. The predictive capability of the 
model, especially in the case of wind-driven circulation and the flow around a channel bend, is 
rated as satisfactory, and would allow the addition of a turbulent model to simulate more complex 
flow situations. 
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